HiPerFAST ${ }^{\text {TM }}$ IGBT ISOPLUS247™
 (Electrically Isolated Back Surface)

Preliminary data sheet

Symbol	Test Conditions	Maximum R	
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	600	V
$\mathrm{V}_{\text {cGr }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\text {GE }}=1 \mathrm{M} \Omega$	600	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	42	A
$\mathrm{I}_{\mathrm{C} 110}$	$\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$	22	A
I_{cm}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	80	A
$\begin{aligned} & \hline \text { SSOA } \\ & \text { (RBSOA) } \end{aligned}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=22 \Omega$ $\text { Clamped inductive load, } L=100 \mu \mathrm{H}$	$\begin{array}{r} \mathrm{l}_{\mathrm{CM}}=48 \\ @ 0.8 \mathrm{~V}_{\text {CES }} \end{array}$	A
P_{c}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	80	w
T_{J}		$-40 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{Jm}		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-40 \ldots+150$	${ }^{\circ} \mathrm{C}$
Maximum lead temperature for soldering $1.6 \mathrm{~mm}(0.062 \mathrm{in}$.$) from case for 10 \mathrm{~s}$		300	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISoL }}$	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}, \mathrm{t}=1$ minute leads-to-tab	2500	V
Weight		5	g

Symbol	Test Conditions		Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
				min.	typ.	max.	
$B V_{\text {ces }}$	I_{C}	$=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		600			V
$\mathrm{V}_{\text {GE(th) }}$	I_{C}	$=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$		2.5		5.0	V
$\mathrm{I}_{\text {ces }}$		$\begin{aligned} & =0.8 \cdot \mathrm{~V}_{\mathrm{CES}} \\ & =0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}= \\ & \mathrm{T}_{\mathrm{J}}= \end{aligned}$			$\begin{array}{r} 200 \\ 1 \end{array}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$\mathrm{I}_{\text {GES }}$		$=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$				± 100	nA
$\mathrm{V}_{\text {CE(sat) }}$		$=I_{T}, V_{G E}=15 \mathrm{~V}$ (see	te 1)		2.1	2.5	V

ISOPLUS 247

$$
\mathrm{G}=\text { Gate }, \quad \mathrm{C}=\text { Collector }
$$

$\mathrm{E}=$ Emitter

* Patent pending

Features

- DCB Isolated mounting tab
- Meets TO-247AD package Outline
- High current handling capability
- Latest generation HDMOS $^{\text {™ }}$ process
- MOS Gate turn-on
- drive simplicity

Applications

- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- AC motor speed control
- DC servo and robot drives
- DC choppers

Advantages

- Easy assembly
- High power density
- Very fast switching speeds for high frequency applications

GIXYS

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)		
	min.	typ.	max	
$\mathrm{g}_{\text {Is }}$	$I_{C}=I_{T} ; V_{C E}=10 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$	17		S
$\begin{aligned} & \mathrm{C}_{\mathrm{ies}} \\ & \mathrm{C}_{\mathrm{oos}} \\ & \mathrm{C}_{\mathrm{res}} \end{aligned}$	$\} \mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{r} 1500 \\ 120 \\ 40 \end{array}$		pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \end{aligned}$	$\} \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{T}}, \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}_{\mathrm{CES}}$	55 13 17		nC nC nc
$\begin{aligned} & \mathbf{t}_{\mathrm{d}(0 \mathrm{on})} \\ & \mathbf{t}_{\mathrm{ri}} \\ & \mathbf{t}_{\mathrm{d}(\mathrm{lof})} \\ & t_{\mathrm{tif}} \\ & \mathrm{E}_{\mathrm{off}} \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $\begin{aligned} & I_{\mathrm{C}}=\mathrm{I}_{\mathrm{T}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{off}}=18 \Omega \end{aligned}$ Remarks: Switching times may increase for $\mathrm{V}_{\mathrm{CE}}($ Clamp $)>0.8 \mathrm{~V}_{\text {CES }}$, higher T_{J} or increased R_{G}	15 25 75 60 0.24	140 110 0.36	ns ns ns mJ
$\begin{aligned} & \mathbf{t}_{\mathrm{d}(0 \mathrm{on})} \\ & \mathbf{t}_{\mathrm{ri}} \\ & \mathrm{E}_{\mathrm{on}} \\ & \mathbf{t}_{\mathrm{dof(t)}} \\ & \mathbf{t}_{\mathrm{tif}^{\prime}} \\ & \mathrm{E}_{\mathrm{off}} \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{T}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\text {off }}=18 \Omega \end{aligned}$ Remarks: Switching times may increase for $V_{C E}$ (Clamp) $>0.8 \quad V_{\text {CES }}$, higher T_{J} or	$\begin{array}{\|r} \hline 15 \\ 12 \\ 0.15 \\ 130 \\ 110 \\ 0.6 \end{array}$		ns ns mJ ns ns mJ
$\begin{aligned} & \overline{\mathbf{R}_{\mathrm{tusc}}} \\ & \mathbf{R}_{\mathrm{trck}} \end{aligned}$		0.15	1.57	

Note: 1. $I_{T}=24 \mathrm{~A}$

